Incorporation of protein into spore coats is not cell autonomous in Dictyostelium
نویسندگان
چکیده
At maturity, the spores of Dictyostelium are suspended in a viscous fluid droplet, with each spore being surrounded by its own spore coat. Certain glycoproteins characteristic of the spore coat are also dissolved in this fluid matrix after the spore coat is formed. To determine whether any proteins of the coat reside in this fluid phase earlier during the process of spore coat assembly, pairs of strains which differed in a spore coat protein carbohydrate marker were mixed and allowed to form spore coats in each other's presence. We reasoned that proteins belonging to an early, soluble, extracellular pool would be incorporated into the spore coats of both strains. To detect trans-incorporation, spores were labeled with a fluorescent antibody against the carbohydrate marker and each spore's fluorescence was analyzed by flow cytometry. Several proteins of both the outer and inner protein layers of the coat appeared to be faithfully and reciprocally trans-incorporated and hence judged to belong to a soluble, assembly-phase pool. Western blot analysis of sorted spores, and EM localization, confirmed this conclusion. In contrast, one outer-layer protein was not trans-incorporated, and was concluded to be insoluble at the time of secretion. Three classes of spore coat proteins can be described: (a) Insoluble from the time of secretion; (b) present in the early, soluble pool but not the late pool after spore coat formation; and (c) present in the soluble pool throughout spore coat assembly. These classes may, respectively: (a) Nucleate spore coat assembly; (b) comprise a scaffold defining the dimensions of the nascent spore coat; and (c) complete the assembly process by intercalation into the scaffold.
منابع مشابه
Dependence of stress resistance on a spore coat heteropolysaccharide in Dictyostelium.
In Dictyostelium, sporulation occurs synchronously as prespore cells approach the apex of the aerial stalk during culmination. Each prespore cell becomes surrounded by its own coat comprised of a core of crystalline cellulose and a branched heteropolysaccharide sandwiched between heterogeneous cysteine-rich glycoproteins. The function of the heteropolysaccharide, which consists of galactose and...
متن کاملA linking function for the cellulose-binding protein SP85 in the spore coat of Dictyostelium discoideum.
SP85 is a multidomain protein of the Dictyostelium spore coat whose C-terminal region binds cellulose in vitro. To map domains critical for localizing SP85 and for binding to other proteins in vivo, its N- and C-terminal regions, and a hybrid fusion of the N- and C-regions, were expressed in prespore cells. Immunofluorescence showed that only the N-terminal region and the N/C-hybrid accumulated...
متن کاملRequirements for the adenylyl cyclases in the development of Dictyostelium.
It has been suggested that all intracellular signaling by cAMP during development of Dictyostelium is mediated by the cAMP-dependent protein kinase, PKA, since cells carrying null mutations in the acaA gene that encodes adenylyl cyclase can develop so as to form fruiting bodies under some conditions if PKA is made constitutive by overexpressing the catalytic subunit. However, a second adenylyl ...
متن کاملTgrC1 Has Distinct Functions in Dictyostelium Development and Allorecognition
The cell adhesion glycoproteins, TgrB1 and TgrC1, are essential for Dictyostelium development and allorecognition, but it has been impossible to determine whether their pleiotropic roles are due to one common function or to distinct functions in separate pathways. Mutations in the respective genes, tgrB1 and tgrC1, abrogate both development and allorecognition and the defects cannot be suppress...
متن کاملThe Dictyostelium dual-specificity kinase splA is essential for spore differentiation.
We have studied the structure and function of the Dictyostelium kinase splA. A truncated form of the splA protein exhibited primarily tyrosine kinase activity in vitro; however, it also autophosphorylated on serine and threonine residues. The kinase domain of splA exhibits approximately 38% identity to the CTR1 kinase of Arabidopsis, which is a member of the Raf family. Outside its kinase domai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 116 شماره
صفحات -
تاریخ انتشار 1992